Wireless Activity Timer

Wireless Activity Timer R718MBC User Manual

Copyright©Netvox Technology Co., Ltd.

This document contains proprietary technical information which is the property of NETVOX Technology. It shall be maintained in strict confidence and shall not be disclosed to other parties, in whole or in part, without written permission of NETVOX Technology. The specifications are subject to change without prior notice.

Table of Content

1. Introduction	2
2. Appearance	3
3. Main Features	3
4. Set up Instruction.	4
5. Data Report	5
5.1 Example of Report Data	6
5.2 Example of Config Report Time	7
5.3 Example of Config R718MBType	7
5.4 Example of Config Active Threshold	8
6. Information about Battery Passivation	9
6.1 To determine whether a battery requires activation	9
6.2 How to activate the battery	9
7. Relevant Products	10
8. Important Maintenance Instruction	10

1. Introduction

The R718MBC series equipment is a vibration alarm device for Netvox ClassA type equipment based on the LoRaWAN open protocol. It can count time of the movement or vibration duration of the equipment and is compatible with the LoRaWAN protocol.

LoRa Wireless Technology:

LoRa is a wireless communication technology dedicated to long distance and low power consumption. Compared with other communication methods, LoRa spread spectrum modulation method greatly increases to expand the communication distance. Widely used in long-distance, low-data wireless communications. For example, automatic meter reading, building automation equipment, wireless security systems, industrial monitoring. Main features include small size, low power consumption, transmission distance, anti-interference ability and so on.

LoRaWAN:

LoRaWAN uses LoRa technology to define end-to-end standard specifications to ensure interoperability between devices and gateways from different manufacturers.

2. Appearance

3. Main Features

- Compatible with LoRaWAN
- 2 ER14505 lithium batteries in parallel power supply (3.6V / section)
- IP Rating: IP65/IP67 (Optional)
- Compatible with LoRaWANTM Class A
- The base is attached with a magnet that can be attached to a ferromagnetic material object
- Frequency hopping spread spectrum
- Configuration parameters can be configured via a third-party software platform, data can be read and alerts can be set via SMS text and email (optional)
- Applicable to third-party platforms: Actility/ThingPark, TTN, MyDevices/Cayenne
- Low power consumption and long battery life

Battery Life:

- Please refer to web: http://www.netvox.com.tw/electric/electric_calc.html
- At this website, users can find battery life time for variety models at different configurations.

4. Set up Instruction

On/Off

Power on	Insert batteries. (Users may need a screwdriver to open)			
Turn on	Press and hold the function key for 3 seconds till the green indicator flashes once.			
Turn off (Restore to factory setting)	Press and hold the function key for 5 seconds till green indicator flashes for 20 times.			
Power off	Remove Batteries.			
	1. Remove and insert the battery; the device is at off state by default.			
Note	2. On/off interval is suggested to be about 10 seconds to avoid the interference of capacitor			
Note	inductance and other energy storage components.			
	3. At 1 st -5 th second after power on, the device will be in engineering test mode.			

Network Joining

	Turn on the device to search the network to join.		
Never joined the network	The green indicator stays on for 5 seconds: success		
	The green indicator remains off: fail		
Had is in ad the network	Turn on the device to search the previous network to join.		
Had joined the network	The green indicator stays on for 5 seconds: success		
(not at factory setting)	The green indicator remains off: fail		

Function Key

	Restore to factory setting / Turn off			
Press and hold for 5 seconds	The green indicator flashes for 20 times: success			
	The green indicator remains off: fail			
	The device is in the network: green indicator flashes once and sends a report			
Press once	The device is not in the network: green indicator remains off			

Sleeping Mode

		Sleeping period: Min Interval.
The de	evice is on and in the network	When the reportchange exceeds setting value or the state changes: send a data report according
		to Min Interval.

Low Voltage Warning

Low Voltage	3.2V

5. Data Report

When the device is turned on, it will immediately send a version package and a report data.

Data will be reported once per hour by default setting.

Default Setting:

Maximum time: 0x0E10 (3600s)

Minimum time: 0x0E10 (3600s) // Detect the current voltage value every 3600s by default setting

Battery Change: 0x01 (0.1V)

R718MBC Vibration:

The device detects sudden movement or vibration to start timing, and ends the time after entering the stationary state for 5 seconds, sends a report of the vibration duration, and restarts a new round of detection, and the timing is cleared. If vibration continues to occur during this process, the 5 seconds timing restarts until it reaches a standstill.

Active Threshold:

Active threshold range is 0x0003-0x00FF (default is 0x0003, the most sensitive)

Active Threshold = Critical value $\div 9.8 \div 0.0625$

- * The gravitational acceleration at standard atmospheric pressure is 9.8 m/s²
- * The scale factor of the threshold is 62.5 mg

R718MB DeviceType:

 $0x01_R718MBA$

0x02_R718MBB

0x03_R718MBC

The default value is the programming value.

Note:

- 1. The device report interval will be programmed based on the default firmware which may vary.
- 2. The interval between two reports must be the minimum time.

Please refer Netvox LoRaWAN Application Command document and Netvox Lora Command Resolver http://cmddoc.netvoxcloud.com/cmddoc to resolve uplink data.

Data report configuration and sending period are as following:

Min. Interval	Max. Interval	Reportable Change	Current Change≥	Current Change <
(Unit:second)	(Unit:second)	Reportable Change	Reportable Change	Reportable Change
Any number between	Any number between	Con not be 0	Report	Report
1~65535	1~65535	Can not be 0.	per Min. Interval	per Max. Interval

5.1 Example of Report Data

FPort: 0x06

Bytes	1	1	1	Var(Fix=8 Bytes)
	Version	DeviceType	ReportType	NetvoxPayLoadData

Version – 1 byte –0x01——the Version of NetvoxLoRaWAN Application Command Version

DeviceType– 1 byte – Device Type of Device

The devicetype is listed in Netvox LoRaWAN Application Devicetype doc

ReportType – 1 byte –the presentation of the NetvoxPayLoadData, according the devicetype

NetvoxPayLoadData– Fixed bytes (Fixed =8bytes)

Device	Device Type	Report Type	NetvoxPayLoadData			
D719MDC	0v2C	0x01	Battery	Workdurationtime	Reserved	
K/10MBC	R718MBC 0x2C		(1Byte,unit:0.1V)	(4Bytes,unit:1s)	(3Bytes,fixed 0x00)	

Example 1 of Uplink: 012C012400000018000000

1st byte (01): Version

2nd byte (2C): DeviceType—R718MBC

3rd byte (01): ReportType

4th byte (24): Battery – 3.6v , 24 Hex=3.6Dec 36*0.1v=3.6v

 $5^{th} \sim 8^{th}$ byte (00000018): Work Count — 24s, 18 Hex=24 Dec

 $9^{th} \sim 11^{th}$ byte (000000): Reserved

Example 2 of Uplink: 012C019F00000022000000

1st byte (01): Version

2nd byte (2C): DeviceType—R718MBC

3rd byte (01): ReportType

4th byte (9F): Battery -3.1v, 1F Hex=31Dec 31*0.1v=3.1v // Low battery

 $5^{th} \sim 8^{th}$ byte (00000022): Work Count — 34s, 22 Hex=34 Dec

 $9^{th} \sim 11^{th}$ byte (000000): Reserved

Note:

When the battery is low voltage, the highest bit of the voltage is 1, and bit0-bit6 represents the voltage value.

5.2 Example of Config Report Time

FPort: 0x07

Bytes	1	1	Var (Fix =9 Bytes)
	CmdID	DeviceType	NetvoxPayLoadData

CmdID– 1 byte

DeviceType– 1 byte – Device Type of Device

NetvoxPayLoadData– var bytes (Max=9bytes)

Description	Device	Cmd ID	Device Type	NetvoxPayLoadData						
Config		001		MinTime	MaxTime	BatteryChange	Reserved			
ReportReq		0x01		(2bytes Unit:s)	(2bytes Unit:s)	(1byte Unit:0.1v)	(4Bytes,Fixed 0x00)			
Config	0.01	0x81			0x81		Sta	tus	Res	served
ReportRsp	R718MBC					0x2C	(0x00_s	uccess)	(8Bytes,I	Fixed 0x00)
ReadConfig	0x02	002	0×02	0x02	UX2C		R	eserved		
ReportReq		UXU2			(9Bytes	s,Fixed 0x00)				
ReadConfig		092		MinTime	MaxTime	BatteryChange	Reserved			
ReportRsp		0x82	0x82		(2bytes Unit:s)	(2bytes Unit:s)	(1byte Unit:0.1v)	(4Bytes,Fixed 0x00)		

(1) Configure device parameters MinTime = 5 min, MaxTime = 5 min, Battery Change = 0.1v

The device returns:

812C<u>00</u>000000000000000 // Configuration is successful

812C<u>01</u>0000000000000000 // Configuration failed

(2) Read device parameters

The device returns: 822C012C012C0100000000 // Current device parameters

5.3 Example of Config R718MBType

FPort: 0x07

Description	Device	Cmd	Device	NetvoxPayLoadData	
		ID	Type	- (00) 0	
SetR718MB	R718MBC	0x03	0x2C	R718MBType(1Byte) 0x01_R718MBA	Reserved
TypeReq				0x02_R718MBB	(8Bytes,Fixed 0x00)

			0x03_R718MBC		
SetR718MB	0.92	0.02	Status	Reserved	
TypeRsp	0x83		(0x00_success)	(8Bytes,Fixed 0x00)	
GetR718MB	0x04		Reserved		
TypeReq	0x04		(9Bytes,Fi	(9Bytes,Fixed 0x00)	
			R718MBType(1Byte)		
GetR718MB	0x84		0x01_R718MBA	Reserved	
TypeRsp	0x84		0x02_R718MBB	(8Bytes,Fixed 0x00)	
			0x03_R718MBC		

(3) Change the device type to R718MBA

Downlink: 032C<u>01</u>00000000000000000

The device returns:

832C<u>00</u>00000000000000000

// Configuration succeeded

832C<u>01</u>00000000000000000

// Configuration failed

(4) Check the current device type

5.4 Example of Config Active Threshold

FPort: 0x07

Description	Device	Cmd	Device	NetvoxPayLoadData			
Description	Device	ID	Type		Netvoxr ay Loau Data		
SetActive		0x05 0x85 R718MBC		Threshold	Deactivetime		Reserved
ThresholdReq				(2Bytes)	(1Byte,	Unit:1s)	(6Bytes,Fixed 0x00)
SetActive				Status		Reserved	
ThresholdRsp	D710MDC			(0x00_success)		(8Bytes,Fixed 0x00)	
GetActive	R/16MIDC			Reserved			
ThresholdReq		0x06		(9Bytes,Fixed 0x00)			
GetActive		0x86		Threshold	Deactivetime		Reserved
ThresholdRsp				(2Bytes)	(1Byte,	Unit:1s)	(6Bytes,Fixed 0x00)

(5) Assuming the threshold is 10m/s², the value that needs to be set is 10/9.8/0.0625=16.32, the last value is 16.32 which needs to be taken an integer, and the configuration is 16.

Configure device parameters Threshold= 16, Deactivetime=10s

852C<u>01</u>000000000000000 // Configuration failed

(6) Read device configuration parameters

The device returns: 862C00100A000000000000 (current device configuration parameters)

6. Information about Battery Passivation

Many of Netvox devices are powered by 3.6V ER14505 Li-SOCl2 (lithium-thionyl chloride) batteries that offer many advantages including low self-discharge rate and high energy density.

However, primary lithium batteries like Li-SOCl2 batteries will form a passivation layer as a reaction between the lithium anode and thionyl chloride if they are in storage for a long time or if the storage temperature is too high. This lithium chloride layer prevents rapid self-discharge caused by continuous reaction between lithium and thionyl chloride, but battery passivation may also lead to voltage delay when the batteries are put into operation, and our devices may not work correctly in this situation.

As a result, please make sure to source batteries from reliable vendors, and it is suggested that if the storage period is more than one month from the date of battery production, all the batteries should be activated.

If encountering the situation of battery passivation, users can activate the battery to eliminate the battery hysteresis.

ER14505 Battery Passivation:

6.1 To determine whether a battery requires activation

Connect a new ER14505 battery to a resistor in parallel, and check the voltage of the circuit.

If the voltage is below 3.3V, it means the battery requires activation.

6.2 How to activate the battery

- a. Connect a battery to a resistor in parallel
- b. Keep the connection for 5~8 minutes
- c. The voltage of the circuit should be ≥ 3.3 , indicating successful activation.

Brand	Load Resistance	Activation Time	Activation Current
NHTONE	165 Ω	5 minutes	20mA
RAMWAY	67 Ω	8 minutes	50mA
EVE	67 Ω	8 minutes	50mA
SAFT	67 Ω	8 minutes	50mA

Note:

If you buy batteries from other than the above four manufacturers, then the battery activation time, activation current, and required load resistance shall be mainly subject to the announcement of each manufacturer.

9

7. Relevant Products

Model	Function	Appearance
R718MBA	Detect the movement or vibration of the device and triggers an alarm.	7e.
R718MBB	Counts the number of movements or vibrations of the device.	Petros.
R718MBC	Counts the movement or vibration duration of the device.	

8. Important Maintenance Instruction

Your device is a product of superior design and craftsmanship and should be used with care. The following suggestions will help you use the warranty service effectively.

- Keep the equipment dry. Rain, moisture, and various liquids or moisture may contain minerals that can corrode electronic circuits.

 In case the device is wet, please dry it completely.
- Do not use or store in dusty or dirty areas. This can damage its detachable parts and electronic components.
- Do not store in excessive heat. High temperatures can shorten the life of electronic devices, destroy batteries, and deform or melt some plastic parts.
- Do not store in a cold place. Otherwise, when the temperature rises to normal temperature, moisture will form inside, which will destroy the board.
- Do not throw, knock or shake the device. Rough handling of equipment can destroy internal circuit boards and delicate structures.
- Do not wash with strong chemicals, detergents or strong detergents.
- Do not apply with paint. Smudges can block debris in detachable parts and affect normal operation.
- Do not throw the battery into a fire to prevent the battery from exploding. Damaged batteries may also explode.

All of the above suggestions apply equally to your device, battery and accessories. If any device is not working properly. Please take it to the nearest authorized service facility for repair.