Wireless Single-Phase Current Meter

(DC-Powered)

R718N1xxxD(E) Series User Manual

Copyright©Netvox Technology Co., Ltd.

This document contains proprietary technical information which is the property of NETVOX Technology. It shall be maintained in strict confidence and shall not be disclosed to other parties, in whole or in part, without written permission of NETVOX Technology. The specifications are subject to change without prior notice.

Table of Contents

1. Introduction	2
2. Appearance	3
3. Features	
4. Set up Instruction	5
5. Data Report	6
5.1 Example of ReportDataCmd	7
5.2 Example of ConfigureCmd	9
5.3 Example of Set/GetSensorAlarmThresholdCmd	10
5.4 Example of NetvoxLoRaWANRejoin	
6. Installation	12
7. Important Maintenance Instruction	14

1. Introduction

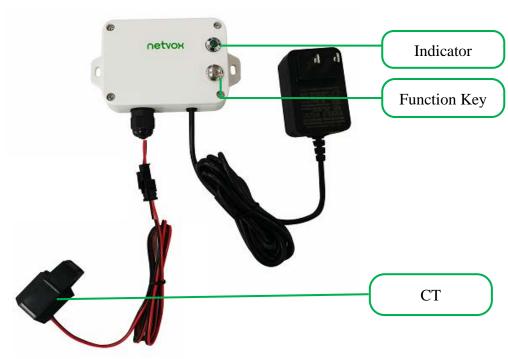
The R718N1xxxD(E) series is single-phase current meter device (DC-powered) for Netvox Class C type devices based on the LoRaWAN open protocol and is compatible with the LoRaWAN protocol.

R718N1xxxD(E) series has different measuring range for different variety of CT. It is divided into:

Model	Name	CT cables
R718N17D	Wireless Single Phase Current Motor with 1 v 75 A Clemp On CT	-
R718N17DE	Wireless Single-Phase Current Meter with 1 x 75A Clamp-On CT	Detachable cables
R718N115D	Wireless Single Phase Current Mater with 1 v 1504 Clemp On CT	-
R718N115DE	Wireless Single-Phase Current Meter with 1 x 150A Clamp-On CT	Detachable cables
R718N125D	Windows Single Dhose Cument Mater with 1 v 250 A Clamp On CT	-
R718N125DE	Wireless Single-Phase Current Meter with 1 x 250A Clamp-On CT	Detachable cables
R718N163D	Windows Single Dhose Cument Mater with 1 v 620 A Clamp On CT	-
R718N163DE	Wireless Single-Phase Current Meter with 1 x 630A Clamp-On CT	Detachable cables
R718N1100D	Wireless Single Phase Current Meter with 1 v 1000 A Clamp On CT	-
R718N1100DE	Wireless Single-Phase Current Meter with 1 x 1000A Clamp-On CT	Detachable cables

LoRa Wireless Technology

LoRa is a wireless communication technology famous for its long-distance transmission and low power consumption. Compared with other communication methods, LoRa spread spectrum modulation technique greatly extend the communication distance. It can be widely used in any use case that requires long-distance and low-data wireless communications. For example, automatic meter reading, building automation equipment, wireless security systems, industrial monitoring. It has features like small size, low power consumption, long transmission distance, strong anti-interference ability and so on.


LoRaWAN

LoRaWAN uses LoRa technology to define end-to-end standard specifications to ensure interoperability between devices and gateways from different manufacturers.

2. Appearance

R718N17D (Non-detachable cables)

R718N17DE (Detachable cables)

R718N115D (Non-detachable cables)

R718N115DE (Detachable cables)

R718N125D (Non-detachable cables)

R718N125DE (Detachable cables)

netvox (in the control of the contro

R718N163D (Non-detachable cables)

R718N163DE (Detachable cables)

R718N1100D (Non-detachable cables)

R718N1100DE (Detachable cables)

3. Features

- Power supplied by DC 3.3V/1A power adapter
- Only support AC current measuring
- IP30
- LoRaWANTM Class C compatible
- Frequency Hopping Spread Spectrum (FHSS)
- Configuring parameters and reading data via third-party software platforms, and set alarms via SMS text and email (optional)
- Available third-party platforms: Actility/ThingPark, TTN, MyDevices/Cayenne

4. Set up Instruction

On/Off

Down on / Turn on	Plug in and the device turns on.
Power on / Turn on	The indicator flashes once.
Turn off / Power off	Pull out the plug and the device turns off.

Network Joining

	Turn on the device and search for the network to join.				
Never joined the network	The green indicator light stays on: Success				
	The green indicator light remains off: Fail				
Had joined the network	Turn on the device and search for the previous network to join.				
Had joined the network	The green indicator light stays on: Success				
(without factory resetting)	The green indicator light remains off: Fail				
	1 st – 2 nd minutes: Wake up every 15 seconds to send request for joining the network				
Fail to Join the Network	After 2 nd minutes: The device is in sleeping mode and wakes up every 15 minutes to send				
	request for joining the network				

Function Key

Press the function key and	The device will be set to default and reboot				
	The green indicator light flashes 20 times: Success				
hold for 5 seconds	The green indicator light remains off: Fail				
	The device is in the network: green indicator light flashes once and sends a report after				
Short press the function key	sampling.				
	The device is not in the network: green indicator flashes 3 times.				

Note: Please check the device verification information on the gateway or consult your platform server provider.

5. Data Report

The device will immediately send a version packet report along with two uplink packets including current value (mA).

The device sends data in the default configuration before any configuration is done.

Default setting:

Min Interval = 0x0002 (2s)

Max Interval = 0x0384 (900s)

ReportChange= 0x0064 (100 mA)

Measurement Range and Accuracy:

	CT	Measurement Range	Accuracy
R718N17D(E)	Clamp-on	100mA – 75A	
R718N115D(E)	Clamp-on	1A – 150A	
R718N125D(E)	Clamp-on	1A – 250A	±1%
R718N163D(E)	Clamp-on	5A – 630A	
R718N1100D(E)	Clamp-on	10A – 1000A	

Note:

- (1) R718N1D(E), R718N13D(E), and R718N17D(E): report data as 0A when the current < 0.1A.
- (2) R718N115D(E), R718N125D(E), R718N163D(E), and R718N1100D(E): report data as 0A when the current < 1A.

Please refer Netvox LoRaWAN Application Command document and Netvox Lora Command Resolver

http://www.netvox.com.cn:8888/cmddoc to resolve uplink data.

Data report configuration and sending period are as following:

Min. Interval	Max. Interval	Danautahla Changa	Current Change≥	Current Change <
(Unit: second)	(Unit: second)	Reportable Change	Reportable Change	Reportable Change
Any number between	Any number between	Con not be 0	Report	Report
2 to 65535	Min Interval to 65535	Can not be 0	per Min. Interval	per Max. Interval

Tips

1. Battery Voltage:

If the battery is equal to 0x00, it means that the device is powered by a DC power supply.

2. Version Packet:

When Report Type=0x00 is the version packet, such as 0149000A02202208210000, the firmware version is 2022.08.21.

3. Data Packet:

When Report Type=0x01 is data packet.

4. Current Value:

The maximum payload of Current is 2 bytes, which means the maximum value that can be shown is 65535mA. To get the actual current value, the current needs to time Multiplier as it exceeds 65535mA.

5. Multiplier

The Multiplier would be 1 or 10 when R718N1xxx(E) reports data.

5.1 Example of ReportDataCmd

FPort: 0x06

Bytes	1	1	1	Var (Fix=8 Bytes)
	Version	DeviceType	ReportType	NetvoxPayLoadData

Version– 1 byte –0x01——the Version of NetvoxLoRaWAN Application Command Version

DeviceType– 1 byte – Device Type of Device

ReportType – 1 byte –the presentation of the NetvoxPayLoadData, according the devicetype

NetvoxPayLoadData– Fixed bytes (Fixed =8bytes)

Device	Device Type	Report Type	NetvoxPayLoadData							
		0x00	SoftwareVersion (1Byte) Eg.0x0A-V1			DateCode (4 Bytes) eg 0x20170503		Reserved (2Bytes)		
R718N1xxxD(E) Series	0x49	0x01	Battery (1Byte, unit:0.1v)	(2B	Current ytes, unit: mA)		tiplier Byte)	Threshold (1Byte Bit0_LowCurre Bit1_HighCurr Bit2-7:Reserve	e) entAlarm entAlarm	Reserved (3Bytes)

(1) Example1 of Uplink: 014901000E150100000000

```
1<sup>st</sup> byte (01): Version

2<sup>nd</sup> byte (49): DeviceType - R718N1xxxD(E) Series

3<sup>rd</sup> byte (01): ReportType

4<sup>th</sup> byte (00): Battery - DC power supply

5<sup>th</sup> - 6<sup>th</sup> byte (0E15): Current - 3605 mA 0E15 (Hex) = 3605 (Dec), 3605* 1mA = 3605mA

7<sup>th</sup> byte (01): Multiplier - 1

8<sup>th</sup> byte (00): Threshold Alarm - No alarm

9<sup>th</sup>-11<sup>th</sup> byte (000000): Reserved
```

(2) Example 2 of Uplink: 014901001B580A02000000

```
1<sup>st</sup> byte (01): Version

2<sup>nd</sup> byte (49): DeviceType - R718N1xxxD(E) Series

3<sup>rd</sup> byte (01): ReportType

4<sup>th</sup> byte (00): Battery - DC power supply

5<sup>th</sup> - 6<sup>th</sup> byte (1B58): Current - 7000 mA 1B58 (Hex) = 7000 (Dec), 7000mA*10 = 70000mA(70A)

7<sup>th</sup> byte (0A): Multiplier - 10

8<sup>th</sup> byte (02): Threshold Alarm - HighCurrentAlarm, 02(Hex)=0000 00010(Bin), bit1=1 HighCurrentAlarm

9<sup>th</sup>-11<sup>th</sup> byte (000000): Reserved
```

5.2 Example of ConfigureCmd

FPort: 0x07

Bytes	1	1	Var(Fix =9 Bytes)
	CmdID	DeviceType	NetvoxPayLoadData

CmdID– 1 byte

DeviceType– 1 byte – Device Type of Device

NetvoxPayLoadData— var bytes (Max=9bytes)

Description	Device	Cmd ID	Device Type	NetvoxPayLoadData						
Config		0x01		MinTime	MaxTime	CurrentChange	Reserved			
ReportReq		OXOI		(2Bytes Unit: s)	(2Bytes Unit: s)	(2Bytes Unit:1mA)	(3Bytes, Fixed 0x00)			
Config		0x81		Sta	itus	Reserved				
ReportRsp	R718N1xxxD(E)	OXOI	0 40	(0x00_s	success)	(8Bytes,Fixed 0x00)				
ReadConfig	Series	0x02	0x49	Reserved						
ReportReq		OXOZ		(9Bytes,Fixed 0x00)						
ReadConfig		0x82		MinTime	MaxTime	CurrentChange	Reserved			
ReportRsp		01102		(2Bytes Unit: s)	(2Bytes Unit: s)	(2Bytes Unit: 1mA)	(3Bytes, Fixed 0x00)			

(1) Configure device parameters

MinTime = 60s (0x003C), MaxTime = 60s (0x003C), CurrentChange = 100mA (0x0064)

Downlink: 0149003C003C0064000000

The device returns:

8149<u>01</u>00000000000000000 (Configuration failed)

(2) Read device configuration parameters

The device returns:

8249003C003C0064000000 (Current device configuration parameters)

5.3 Example of Set/GetSensorAlarmThresholdCmd

Fport: 0x10

CmdDescriptor	CmdID (1Byte)	Payload (10Bytes)								
SetSensorAlarm ThresholdReq	0x01	Channel(1Byte) 0x00_Channel 1	SensorType(1Byte) 0x00_Disable ALL 0x27_ Current		0x00_Disable ALL		ote) $0x00_Disable ALL$ SensorHighThreshol (4Bytes,Unit:1mA)			SensorLowThreshold (4Bytes,Unit:1mA)
SetSensorAlarm ThresholdRsp	0x81	Sta (0x00_s		Reserved (9Bytes,Fixed 0x00)						
GetSensorAlarm ThresholdReq	0x02	Channel (1Byte, 0x00_Channel)	Channel (1Byte, 0x00_Channel1) SensorTyp 0x00_Disa 0x27_0		able ALL (8		Reserved BBytes,Fixed 0x00)			
GetSensorAlarm ThresholdRsp	0x82	Channel (1Byte) 0x00_Channel 1	SensorType(1Byte) 0x00_Disable ALL 0x27_ Current		SensorHighThr (4Bytes,Unit:		SensorLowThreshold (4Bytes,Unit:1mA)			

Note:

- a. Set SensorHigh/LowThreshold as 0xFFFFFFF to disable threshold.
- b. The last configuration would be kept as user reset the device back to the factory setting.
- c. Firmware after 2023.07.24 supports threshold alarm.

(1) Configure device parameter

Channel = 0x00 (fixed value), SensorType = 0x27 (fixed value), SensorHighThreshold = 1000mA (0x000003E8),

SensorLowThreshold=100mA (0x00000064)

Downlink: 010027000003E800000064

The device returns:

81<u>00</u>0000000000000000000 (Configuration successful)

81<u>01</u>0000000000000000000 (Configuration failed)

(2) Read device configuration parameters.

The device returns:

820027000003E800000064 (Current device configuration parameters)

5.4 Example of NetvoxLoRaWANRejoin

Check if the device is still in the network. If the device is disconnected, it will automatically rejoin back to the network.

Fport: 0x20

CmdDescriptor	CmdID	Payload (5 bytes)	
	(1 byte)		
SetNetvoxLoRaWANRejoinReq	0x01	RejoinCheckPeriod	RejoinThreshold
		(4 Bytes, Unit: 1s)	(1 Byte)
SetNetvoxLoRaWANRejoinRsp	0x81	Status	Reserved
		(1 Byte, 0x00_success)	(4 Bytes, Fixed 0x00)
GetNetvoxLoRaWANRejoinReq	0x02	Reserved	
		(5 Bytes, Fixed 0x00)	
GetNetvoxLoRaWANRejoinRsp	0x82	RejoinCheckPeriod	RejoinThreshold
		(4 Bytes, Unit: 1s)	(1Byte)

Note:

- a. Set RejoinCheckThreshold as 0xFFFFFFF to stop the device from rejoining the network.
- b. The last configuration would be kept as user reset the device back to the factory setting.
- c. Default setting: RejoinCheckPeriod = 2 (hr) and RejoinThreshold = 3 (times)
- d. Firmware after 2023.11.06 supports SetNetvoxLoRaWANRejoinReq.

(1) Command Configuration

Set RejoinCheckPeriod = 3600s (0x00000E10), RejoinThreshold = 3 times

Downlink: 0100000E1003

Response:

81<u>00</u>00000000 (Configuration success)

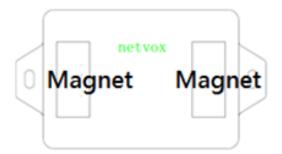
81<u>01</u>00000000 (Configuration failure)

(2) Read current configuration

RejoinCheckPeriod, RejoinThreshold

Downlink: 020000000000

Rthe esponse: 8200000E1003


6. Installation

1. The single-phase current meter R718N1xxxD(E) series has a built-in magnet (see Figure 1 below). It can be attached to the surface of an object with iron during installation, which is convenient and quick.

To make the installation more secure, please use screws (purchased separately) to fix the device to the wall or other objects (such as the installation diagram).

Note:

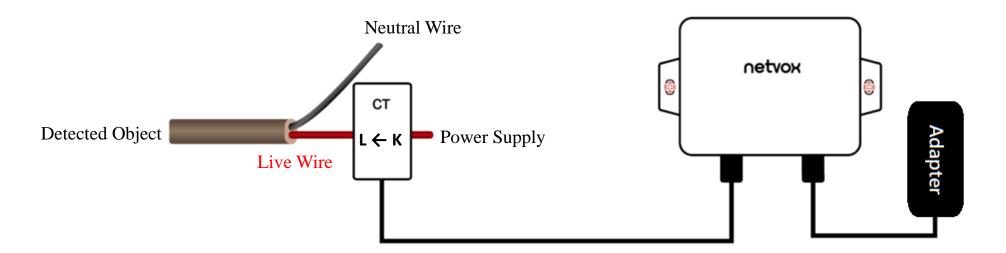
Do not install the device in a metal-shielded box or in an environment surrounded by other electrical equipment to avoid affecting the wireless transmission of the device.

2. Open the clamp-on current transformer, and then pass the live wire through the current transformer according to the installation.

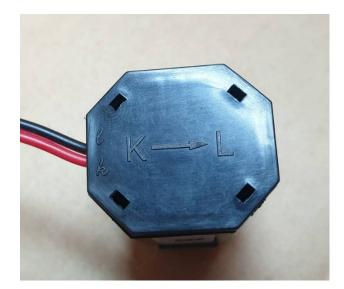
Note: " $L \leftarrow K$ " is marked on the bottom of the CT.

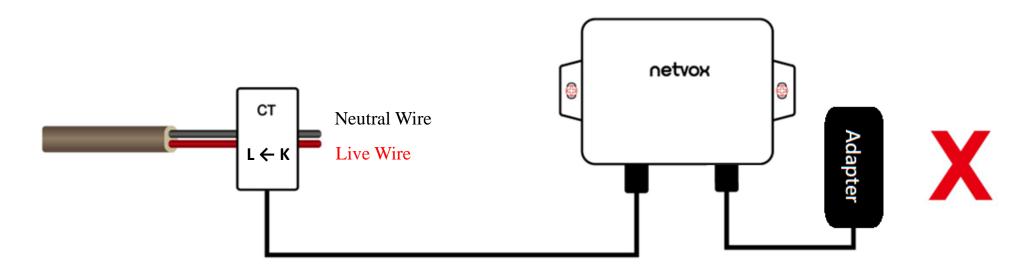
- 3. Precautions:
- 3.1 Before using, users must check whether the appearance is deformed; otherwise, the test accuracy will be affected.
- 3.2 The using environment should be kept away from strong magnetic fields, so as not to affect the test accuracy. It is strictly forbidden to use in humid and corrosive gas environments.

3.3 Before installation, please confirm the current value of the load. If the current value of the load is higher than the measurement range, select a model with a higher measurement range.


The single-phase current detector R718N1xxxD(E) is suitable for the following scenarios:

- School
- Factory
- Shopping mall
- Office building
- Smart building


Where the electrical data of the device with the singlephase electricity needs to be detected.


- 1. The back of R718N1xxxD(E) can be attached to iron surface or users can fix the two ends of device on the wall with screws.
- 2. When installing the R718N1xxxD(E) series current transformer, please separate the live and neutral wires of the wire to be detected, and only take the live wire through current transformer and start the measurement according to the wiring below:

CT Wiring Schematic Diagram (Current direction K→L)

If the live wire and the neutral wire are connected together at the same time, they will offset each other and the measurement is 0.

7. Important Maintenance Instruction

Kindly pay attention to the following in order to achieve the best maintenance of the product:

- Do not put the device near or submerge into water. Minerals in rain, moisture, and other liquids could cause corrosion of electronic components. Please dry the device, if it gets wet.
- Do not use or store the device in dusty or dirty environments to prevent damage to parts and electronic components.
- Do not store the device in high temperatures. This may shorten the lifespan of electronic components, damage batteries, and deform plastic parts.
- Do not store the device in cold temperatures. Moisture may damage circuit boards as the temperatures rise.
- Do not throw or cause other unnecessary shocks to the device. This may damage internal circuits and delicate components.
- Do not clean the device with strong chemicals, detergents, or strong detergents.
- Do not apply the device with paint. This may block detachable parts and cause malfunction.

The instructions are applied to your device and accessories.

If any device is not working properly, please bring it to the nearest authorized service provider for repair.