Wireless Single-Phase Current Meter

R718N1xxx(E) Series User Manual

Copyright©Netvox Technology Co., Ltd.

This document contains proprietary technical information which is the property of NETVOX Technology. It shall be maintained in strict confidence and shall not be disclosed to other parties, in whole or in part, without written permission of NETVOX Technology. The specifications are subject to change without prior notice.

Table of Contents

1. Introduction	2
2. Appearance	3
3. Features	3
4. Set up Instruction	4
5. Data Report	5
5.1 Example of ReportDataCmd	6
5.2 Example of ConfigureCmd	8
5.3 Example of Set/GetSensorAlarmThresholdCmd	9
5.4 Example for MinTime/MaxTime logic	10
6. Installation	12
7. Information about Battery Passivation	14
7.1 To determine whether a battery requires activation	14
7.2 How to activate the battery	14
8. Important Maintenance Instruction	

1. Introduction

The R718N1xxx(E) series is the single-phase current meter device for Netvox Class A type devices based on the LoRaWAN open protocol and is compatible with the LoRaWAN protocol. R718N1xxx(E) series has different measuring range for different variety of CT. It is divided into:

Model	Name	CT cables
R718N1	Wireless Single Phase Current Motor with 1 v 201 Solid Core CT	-
R718N1E	Wireless Single-Phase Current Meter with 1 x 30A Solid Core CT	Detachable cables
R718N17	Wireless Single-Phase Current Meter with 1 x 75A Clamp-On CT	-
R718N17E	wheless shighe-rhase Current Weter with 1 x 73A Clamp-On C1	Detachable cables
R718N115	Windows Single Phage Comment Mater with 1 vr 150 A Claren On CT	-
R718N115E	Wireless Single-Phase Current Meter with 1 x 150A Clamp-On CT	Detachable cables
R718N125	Windows Single Phage Cument Mater with 1 v 250 A Clare On CT	-
R718N125E	Wireless Single-Phase Current Meter with 1 x 250A Clamp-On CT	Detachable cables
R718N163	Windows Single Phage Cument Mater with 1 v 620 A Claren On CT	-
R718N163E	Wireless Single-Phase Current Meter with 1 x 630A Clamp-On CT	Detachable cables
R718N1100	Wireless Single Phase Current Motor with 1 v 1000 A Claren On CT	-
R718N1100E	Wireless Single-Phase Current Meter with 1 x 1000A Clamp-On CT	Detachable cables

LoRa Wireless Technology

LoRa is a wireless communication technology famous for its long-distance transmission and low power consumption. Compared with other communication methods, LoRa spread spectrum modulation technique greatly extend the communication distance. It can be widely used in any use case that requires long-distance and low-data wireless communications. For example, automatic meter reading, building automation equipment, wireless security systems, industrial monitoring. It has features like small size, low power consumption, long transmission distance, strong anti-interference ability and so on.

LoRaWAN

LoRaWAN uses LoRa technology to define end-to-end standard specifications to ensure interoperability between devices and gateways from different manufacturers.

2. Appearance

Function Key

CT

R718N17 (non-detachable cables)

R718N17E (detachable cables)

3. Features

- 2 x ER14505 lithium battery in parallel (3.6V/section)
- Main body: IP53; Current transformer: IP30
- LoRaWANTM Class A compatible
- Frequency Hopping Spread Spectrum (FHSS)
- Available third-party platform: Actility/ThingPark, TTN, MyDevices/Cayenne
- Low power consumption and long battery life

Note: Please visit http://www.netvox.com.tw/electric_electric_calc.html for detailed information about battery life calculation.

- 1. The actual range may vary depending on the environment.
- 2. Battery life is determined by sensor reporting frequency and other variables.

4. Set up Instruction

On/Off

Power on	Insert batteries. (Users may need a screwdriver to open the battery cover.)
Turn on	Press and hold the function key for 3 seconds until the green indicator flashes once.
Turn off (Reset to factory setting)	Press and hold the function key for 5 seconds until green indicator flashes 20 times.
Power off	Remove Batteries.

Note: 1.The device will be off in default after removing the battery and insert it again.

- 2.It is suggested to wait for 10 seconds between turning on and off the device.
- 3. 5 seconds after power on, the device will be in engineering test mode.

Network Joining

	Turn on the device and search for the network to join.		
Never joined the network	The green indicator light stays on for 5 seconds: Success		
	The green indicator light remains off: Fail		
Had joined the naturals	Turn on the device, and it will search for the previous network to join.		
Had joined the network (without factory resetting)	The green indicator light stays on for 5 seconds: Success		
	The green indicator light remains off: Fail		
	$1^{\rm st}-2^{\rm nd}$ minutes: Wake up every 15 seconds to send request for joining the network		
Fail to Join the Network	3 rd – 4 th minutes: The device is in sleeping mode and wakes up every 15 minutes to send		
	request for joining the network		

Function Key

Duran the formation have and	The device will be set to default and turned off		
Press the function key and	The green indicator light flashes 20 times: Success		
hold for 5 seconds	The green indicator light remains off: Fail		
Short press the function key	The device is in the network: green indicator light flashes once and sends a report after		
	sampling. (Note: Date sampling takes 15 seconds .)		
(release it within 500ms)	The device is not in the network: green indicator light remains off		

Sleeping Mode

The device is turned on and in the	Sleep period: Min Interval.		
	When the reportchange exceeds setting value or the state changes, the device would send		
network	a data report based on the Min Interval.		
The device is turned on but not in the	$1^{st} - 2^{nd}$ minutes: wake up every 15 seconds to send request for joining the network		
	3 rd – 4 th minutes: The device is in sleeping mode and wakes up every 15 minutes to send		
network	request for joining the network		

Note: 1. To save the energy, please remove the batteries when the device is not in use.

2. Please check the device verification information on the gateway or consult your platform server provider.

Low Voltage Warning

Low Voltage	3.2V	
-------------	------	--

5. Data Report

The device will immediately send a version packet report along with two uplink packets including current value (mA).

The device sends data in the default configuration before any configuration is done.

Default setting:

Max Interval = 0x708 (1800s)

Min Interval = 0x708 (1800s) (MinTime cannot be less than 30 seconds. MaxTime must be greater than MinTime.)

ReportChange= 0x0064 (100 mA)

Note: (1) Min Interval $< 30s \rightarrow$ Data reported every 30 seconds

- (2) Max Interval \leq Min Interval \rightarrow Data reported at Min Interval
- (3) Frequent changes of current may cause inaccurate results when the device is sampling (15 seconds before the beginning of the Min Interval).

Measurement Range and Accuracy:

Device	СТ	Measurement Range	Accuracy
R718N1(E)	Solid-Core	100mA – 30A	
R718N17(E)	Clamp-on	100mA – 75A	
R718N115(E)	Clamp-on	1A – 150A	±1%
R718N125(E)	Clamp-on	1A – 250A	±170
R718N163(E)	Clamp-on	5A – 630A	
R718N1100(E)	Clamp-on	10A – 1000A	

Note: (1) R718N1(E) and R718N17(E): report data as 0A when the current < 0.1A.

(2) R718N115(E), R718N125(E), R718N163(E), and R718N1100(E):

report data as 0A when the current $\leq 1A$.

Please refer Netvox LoRaWAN Application Command document and Netvox Lora Command Resolver http://www.netvox.com.cn:8888/cmddoc to resolve uplink data.

Data report configuration and sending period are as following:

Min. Interval	Max. Interval	Dan autable Change	Current Change≥	Current Change <	
(Unit: second)	(Unit: second)	Reportable Change	Reportable Change	Reportable Change	
Any number between	Any number between	Can not be 0	Report	Report	
30 to 65535	Min Interval to 65535	Can not be 0	per Min. Interval	per Max. Interval	

5.1 Example of ReportDataCmd

FPort: 0x06

Bytes	1	1	1	Var (Fix=8 Bytes)
	Version	DeviceType	ReportType	NetvoxPayLoadData

Version– 1 byte –0x01——the Version of NetvoxLoRaWAN Application Command Version

DeviceType– 1 byte – Device Type of Device

ReportType – 1 byte –the presentation of the NetvoxPayLoadData, according the devicetype

NetvoxPayLoadData—Fixed bytes (Fixed =8bytes)

Tips

1. Battery Voltage:

The voltage value is bit $0 \sim$ bit 6, bit 7=0 is normal voltage, and bit 7=1 is low voltage.

Battery=0xA0, binary=1010 0000, if bit 7= 1, it means low voltage.

The actual voltage is $0010\ 0000 = 0x20 = 32$, 32*0.1v = 3.2v

2. Version Packet:

When Report Type=0x00 is the version packet, such as 0149000A02202208210000, the firmware version is 2022.08.21.

3. Data Packet:

When Report Type=0x01 is data packet.

Device	Device Type	Report Type	NetvoxPayLoadData			
R718N1xxx(E)	040	0x00	SoftwareVersion (1 Byte) Eg.0x0A-V1.0	HardwareVersion (1 Byte)	DateCode (4 Byte) eg 0x20170503	Reserved (2 Byte)
Series	0x49	0x01	Battery (1 Byte, unit:0.1v)	Current (2 Byte, unit: mA)	Multiplier (1 Byte) the real current should convert with Current* Multiplier	Reserved (4 Byte)

Example of Uplink: 014901240E150100000000

```
1<sup>st</sup> byte (01): Version
```

$$4^{th}$$
 byte(24): Battery – 3.6V 24 (Hex) = 36 (Dec), $36*0.1v = 3.6v$

$$5^{th} - 6^{th}$$
 byte (0E15): Current – 3605 mA 0E15 (Hex) = 3605 (Dec), $3605*1mA = 3605mA$

7th byte (01): Multiplier

8th-11th byte (0000000): Reserved

5.2 Example of ConfigureCmd

FPort: 0x07

Bytes	1	1	Var(Fix =9 Bytes)
	CmdID	DeviceType	NetvoxPayLoadData

CmdID– 1 byte

DeviceType– 1 byte – Device Type of Device

NetvoxPayLoadData— var bytes (Max=9bytes)

Description	Device	Cmd ID	Device Type	NetvoxPayLoadData			
Config ReportReq		0x01		MinTime (2bytes Unit:s)	MaxTime (2bytes Unit: s)	CurrentChange (2byte Unit:1mA)	Reserved (3Bytes, Fixed 0x00)
Config ReportRsp	R718N1xxx(E)	0x81 0x02		Status (0x00_success)	Reserved (8Bytes,Fixed 0x00)		
ReadConfig ReportReq	Series			Reserved (9Bytes,Fixed 0x00)			
ReadConfig ReportRsp		0x82		MinTime (2bytes Unit:s)	MaxTime (2bytes Unit: s)	CurrentChange (2byte Unit:1mA)	Reserved (3Bytes, Fixed 0x00)

(1) Configure device parameters

MinTime = 1min (0x003C), MaxTime = 1min (0x003C), CurrentChange = 100mA (0x0064)

Downlink: 0149003C003C0064000000

The device returns:

8149000000000000000000 (Configuration successful)

81490100000000000000000 (Configuration failed)

(2) Read device configuration parameters

The device returns:

8249003C003C0064000000 (Current device configuration parameters)

5.3 Example of Set/GetSensorAlarmThresholdCmd

Fport: 0x10

CmdDescriptor	CmdID (1Byte)	Payload (10Bytes)						
SetSensorAlarm ThresholdReq	0x01	Channel (1Byte, 0x00_Channel1)	SensorType (1Byte, 0x00_Disable ALL 0x27_ Current,)	SensorHighThreshold (4Bytes,Unit:same as reportdata in fport6, 0Xfffffff_DISA-BLE HighThreshold)	SensorLowThreshold (4Bytes,Unit:same as reportdata in fport6, 0Xffffffff_DISABLE LowThreshold)			
SetSensorAlarm ThresholdRsp	0x81	Status (0x00_success)	Reserved (9Bytes,Fixed 0x00)					
GetSensorAlarm ThresholdReq	0x02	Channel (1Byte, (1Byte, Same as the Reserved (8Bytes,Fixed 0x0 0x00_Channel1) SetSensorAlarmThresh oldReq's SensorType)			es,Fixed 0x00)			
GetSensorAlarm ThresholdRsp	0x82	Channel (1Byte, 0x00_Channel1)	SensorType (1Byte, 0x00_Disable ALL 0x27_ Current,)	SensorHighThreshold (4Bytes,Unit:same as reportdata in fport6, 0Xfffffff_DISABLEHighT hreshold)	SensorLowThreshold (4Bytes,Unit:same as reportdata in fport6, 0Xffffffff_DISABLELow Threshold)			

(1) Configure device parameter

Channel = 0x00 (fixed value), SensorType = 0x27 (fixed value), SensorHighThreshold = 1000mA (0x000003E8),

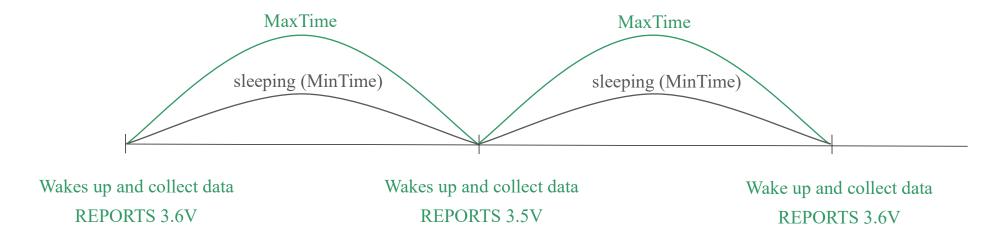
SensorLowThreshold=100mA (0x00000064)

Downlink: 010027000003E800000064

The device returns:

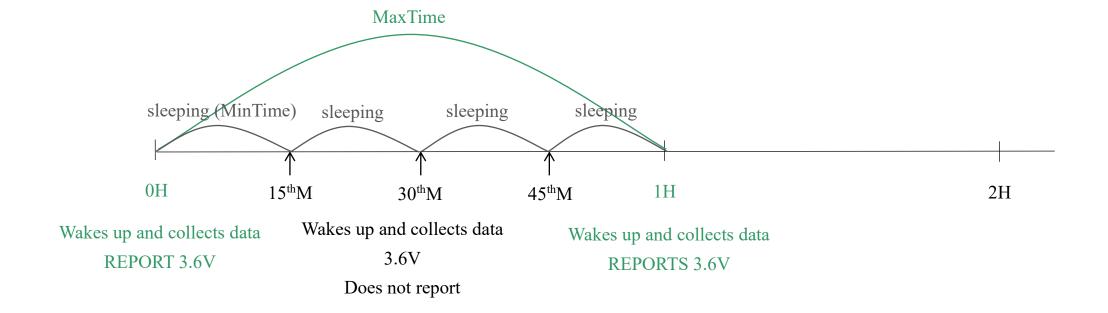
81<u>00</u>00000000000000000000000 (Configuration successful)

81<u>01</u>0000000000000000000 (Configuration failed)

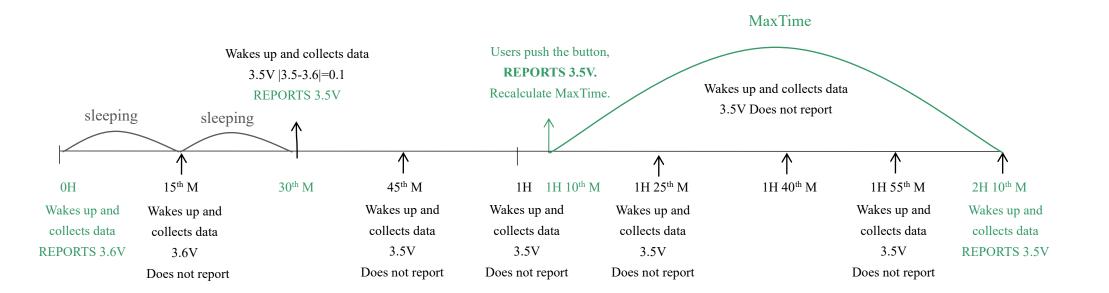

(2) Read device configuration parameters.

The device returns:

820027000003E800000064 (Current device configuration parameters)


5.4 Example for MinTime/MaxTime logic

Example#1 based on MinTime = 1 Hour, MaxTime= 1 Hour, Reportable Change i.e. BatteryVoltageChange=0.1V

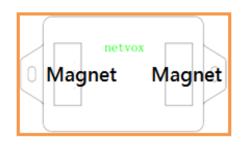


Note: MaxTime = MinTime. Data will only be reported according to MaxTime (MinTime) duration regardless BatteryVoltageChange value.

Example#2 based on MinTime = 15 Minutes, MaxTime= 1 Hour, Reportable Change i.e. BatteryVoltageChange= 0.1V.

Example#3 based on MinTime = 15 Minutes, MaxTime= 1 Hour, Reportable Change i.e. BatteryVoltageChange= 0.1V.

Notes:


- 1) The device only wakes up and performs data sampling according to MinTime Interval. When it is sleeping, it does not collect data.
- 2) The data collected is compared with the last data <u>reported</u>. If the data variation is greater than the ReportableChange value, the device reports according to MinTime interval. If the data variation is not greater than the last data reported, the device reports according to MaxTime interval.
- 3) We do not recommend to set the MinTime Interval value too low. If the MinTime Interval is too low, the device wakes up frequently and the battery will be drained soon.
- 4) Whenever the device sends a report, no matter resulting from data variation, button pushed or MaxTime interval, another cycle of MinTime/MaxTime calculation is started.

6. Installation

1. The single-phase current meter R718N1xxx(E) series has a built-in magnet (see Figure 1 below). It can be attached to the surface of an object with iron during installation, which is convenient and quick.

To make the installation more secure, please use screws (purchased separately) to fix the device to the wall or other objects (such as the installation diagram).

Note: Do not install the device in a metal-shielded box or in an environment surrounded by other electrical equipment to avoid affecting the wireless transmission of the device.

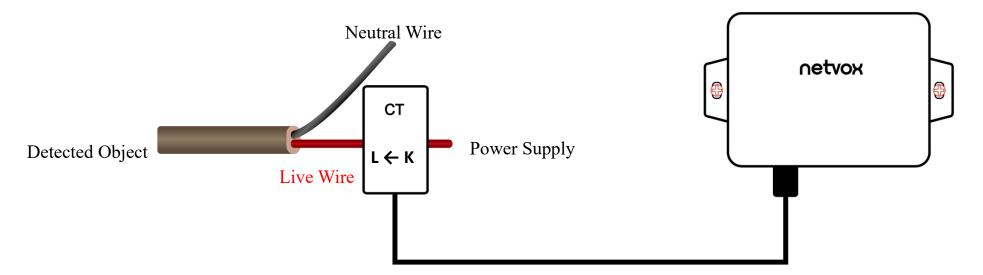
- 4. The single-phase current meter samples the current according to MinTime. If the current value sampled this time relatively exceeds the set value (the default is 100mA) more than the current value reported last time, the device will immediately report the current value sampled this time. If the current variation does not exceed the default value, the data will be reported regularly according to MaxTime.
- 5. Press the function key of the device to start sampling data and report the data after 15 seconds.

Note: MinTime cannot be less than 30 seconds.

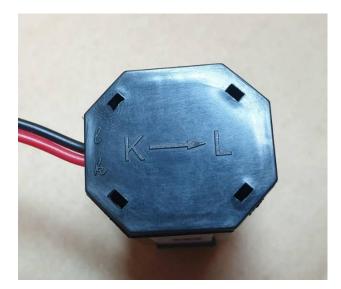
MaxTime must be set greater than Min Time.

2. Open the clamp-on current transformer, and then pass the live wire through the current transformer according to the installation.

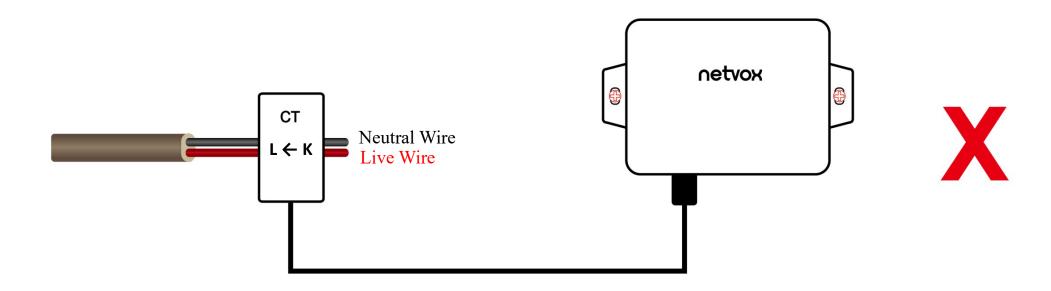
Note: " $L \leftarrow K$ " is marked on the bottom of the CT.


- 3. Precautions:
 - 3.1 Before using, users must check whether the appearance is deformed; otherwise, the test accuracy will be affected.
 - 3.2 The using environment should be kept away from strong magnetic fields, so as not to affect the test accuracy. It is strictly forbidden to use in humid and corrosive gas environments.
 - 3.3 Before installation, please confirm the current value of the load. If the current value of the load is higher than the measurement range, select a model with a higher measurement range.

The single-phase current detector R718N1xxx(E) is suitable for the following scenarios:


- School
- Factory
- Shopping mall
- Office building
- Smart building

Where the electrical data of the device with the single-phase electricity needs to be detected.


- 1. The back of R718N1xxx(E) can be attached to iron surface or users can fix the two ends of device on the wall with screws.
- 2. When installing the R718N1xxx(E) series current transformer, please separate the live and neutral wires of the wire to be detected, and only take the live wire through current transformer and start the measurement according to the wiring below:

CT Wiring Schematic Diagram (Current direction $K\rightarrow L$)

If the live wire and the neutral wire are connected together at the same time, they will offset each other and the measurement is 0.

Note:

- 1. Please do not disassemble the device unless it is required to replace the batteries.
- 2. Do not touch the waterproof gasket, LED indicator, and function keys when replacing the batteries. Please use suitable screwdriver to tighten the screws (if using an electric screwdriver, it is recommended to set the torque as 4kgf) to ensure the device is impermeable.

7. Information about Battery Passivation

Many of Netvox devices are powered by 3.6V ER14505 Li-SOCl2 (lithium-thionyl chloride) batteries that offer many advantages including low self-discharge rate and high energy density. However, primary lithium batteries like Li-SOCl2 batteries will form a passivation layer as a reaction between the lithium anode and thionyl chloride if they are in storage for a long time or if the storage temperature is too high. This lithium chloride layer prevents rapid self-discharge caused by continuous reaction between lithium and thionyl chloride, but battery passivation may also lead to voltage delay when the batteries are put into operation, and our devices may not work correctly in this situation.

As a result, please make sure to source batteries from reliable vendors, and it is suggested that if the storage period is more than one month from the date of battery production, all the batteries should be activated. If encountering the situation of battery passivation, users can activate the battery to eliminate the battery hysteresis.

ER14505 Battery Passivation

7.1 To determine whether a battery requires activation

Connect a new ER14505 battery to a resistor in parallel, and check the voltage of the circuit.

If the voltage is below 3.3V, it means the battery requires activation.

7.2 How to activate the battery

- a. Connect a battery to a resistor in parallel
- b. Keep the connection for 5~8 minutes
- c. The voltage of the circuit should be ≥ 3.3 , indicating successful activation.

Brand	Load Resistance	Activation Time	Activation Current
NHTONE	165 Ω	5 minutes	20mA
RAMWAY	67 Ω	8 minutes	50mA
EVE	67 Ω	8 minutes	50mA
SAFT	67 Ω	8 minutes	50mA

Note:

If you buy batteries from other than the above four manufacturers, then the battery activation time, activation current, and required load resistance shall be mainly subject to the announcement of each manufacturer.

8. Important Maintenance Instruction

Kindly pay attention to the following in order to achieve the best maintenance of the product:

- Do not put the device near or submerge into water. Minerals in rain, moisture, and other liquids could cause corrosion of electronic components. Please dry the device, if it gets wet.
- Do not use or store the device in dusty or dirty environments to prevent damage to parts and electronic components.
- Do not store the device in high temperatures. This may shorten the lifespan of electronic components, damage batteries, and deform plastic parts.
- Do not store the device in cold temperatures. Moisture may damage circuit boards as the temperatures rise.
- Do not throw or cause other unnecessary shocks to the device. This may damage internal circuits and delicate components.
- Do not clean the device with strong chemicals, detergents, or strong detergents.
- Do not apply the device with paint. This may block detachable parts and cause malfunction.
- Do not dispose of batteries in fire to prevent explosion.

The instructions are applied to your device, battery, and accessories.

If any device is not working properly, please bring it to the nearest authorized service provider for repair.