

# **Wireless 2-Input Pulse Counter Interface**

# Wireless 2-Input Pulse Counter Interface

# R718H2 User Manual

#### Copyright©Netvox Technology Co., Ltd.

This document contains proprietary technical information which is the property of NETVOX Technology. It shall be maintained in strict confidence and shall not be disclosed to other parties, in whole or in part, without written permission of NETVOX Technology. The specifications are subject to change without prior notice.

# **Table of Content**

| 1. Introduction                                        | 2  |
|--------------------------------------------------------|----|
| 2. Appearance                                          | 3  |
| 3. Main Feature                                        | 3  |
| 4. Set Up Instruction                                  | 4  |
| 5. Data Report                                         | 5  |
| 5.1 Example of ReportDataCmd                           | 6  |
| 5.2 Example of ConfigureCmd                            | 7  |
| 5.3 Example for MinTime/MaxTime logic                  | 8  |
| 6. Filtering time                                      | 10 |
| 7. Installation                                        | 10 |
| 8. Information about Battery Passivation               | 11 |
| 8.1 To determine whether a battery requires activation | 12 |
| 8.2 How to activate the battery                        | 12 |
| 9. Important Maintenance Instruction                   | 12 |

# 1. Introduction

R718H2 is the wireless 2-Input Pulse Counter Interface of Netvox ClassA type device based on LoRaWAN open protocol that is compatible with LoRaWAN protocol.

#### LoRa Wireless Technology:

LoRa is a wireless communication technology famous for its long-distance transmission and low power consumption. Compared with other communication methods, LoRa spread spectrum modulation technique greatly extend the communication distance. It can be widely used in any use case that requires long-distance and low-data wireless communications. For example, automatic meter reading, building automation equipment, wireless security systems, industrial monitoring. It has features like small size, low power consumption, long transmission distance, strong anti-interference ability and so on.

#### LoRaWAN:

LoRaWAN uses LoRa technology to define end-to-end standard specifications to ensure interoperability between devices and gateways from different manufacturers.

# 2. Appearance



# 3. Main Feature

- Compatible with LoRaWAN
- Pulse state detection
- Simple operation and setting
- Voltage range of external pulse is 2.4v~3.3v
- 2 ER14505 lithium batteries in parallel (3.6V / section)
- Protection class IP65
- Compatible with LoRaWAN<sup>TM</sup> Class A
- Frequency hopping spread spectrum
- Applicable to third-party platforms: Actility/ThingPark, TTN, MyDevices/Cayenne
- Low power consumption and long battery life

#### Battery Life:

- Please refer to web: http://www.netvox.com.tw/electric/electric\_calc.html
- At this website, users can find battery life time for variety models at different configurations.
  - 1. Actual range may vary depending on environment.
  - 2. Battery life is determined by sensor reporting frequency and other variables.

# 4. Set Up Instruction

## On/Off

| Power on                              | Insert batteries (Users may need a screwdriver to open)                                        |  |  |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Turn on                               | Press and hold the function key for 3 seconds till the green indicator flashes once            |  |  |  |  |
| Turn off (Restore to factory setting) | Press and hold the function key for 5 seconds till green indicator flashes 20 times            |  |  |  |  |
| Power off                             | Remove Batteries                                                                               |  |  |  |  |
|                                       | 1. Remove and insert the battery, and then the device is in off state by default.              |  |  |  |  |
| Note                                  | 2. On/off interval is suggested to be about 10 seconds to avoid the interference from capacito |  |  |  |  |
| Note                                  | inductance and other energy storage components                                                 |  |  |  |  |
|                                       | 3. In the first 5 seconds after power on, the device is in engineering test mode               |  |  |  |  |

# **Network Joining**

|                                                              | Turn on the device to search the network.                                                    |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Never join the network                                       | The green indicator stays on for 5 seconds: success                                          |
|                                                              | The green indicator remains off: fail                                                        |
| TI-1'-'1d1                                                   | Turn on the device to search the previous network.                                           |
| Had joined the network  (Not restore to the feature setting) | The green indicator stays on for 5 seconds: success                                          |
| (Not restore to the factory setting)                         | The green indicator remains off: fail                                                        |
| Fail to Join the Network                                     | Suggest to check the device verification information on the gateway or consult your platform |
| ran to Join the Network                                      | server provider.                                                                             |

# **Function Key**

|                              | Restore to factory setting / Turn off                                         |  |
|------------------------------|-------------------------------------------------------------------------------|--|
| Press and hold for 5 seconds | The green indicator flashes 20 times: success                                 |  |
|                              | The green indicator remains off: fail                                         |  |
| Press once                   | The device is in the network: green indicator flashes once and sends a report |  |
|                              | The device is not in the network: green indicator remains off                 |  |

# **Sleeping Mode**

| The device is on and in the | Sleeping period: Min Interval                                                                   |
|-----------------------------|-------------------------------------------------------------------------------------------------|
|                             | When the reportchange exceeds setting value or the state changes, the device send a data report |
| network                     | according to Min Interval.                                                                      |

# **Low Voltage Warning**

| Low Voltage | 3.2V |
|-------------|------|
|-------------|------|

# 5. Data Report

The device will immediately send a version packet report and an uplink packet including battery voltage, pulse count 1 and pulse count 2.

The device sends data according to the default configuration before any other configuring.

#### **Default Setting:**

MaxTime: 0x0E10 (3600s)

MinTime: 0x0E10 (3600s)

BatteryChange: 0x01 (0.1v)

FilterTime: 0x02 (10ms)

#### **Pulse Counter Clear Mode:**

Pulse Counter has two modes.

a. <u>Clear When SEND:0x00</u> (default)

Clear the pulse count after reporting data packet.

b. <u>Clear When Roll-Over:0x01</u> (Enable the mode by command ConfigureCmd)

Accumulate each pulse count, it will clear pulse count reach 0xFFFF then report an uplink packet (0xFFFF), and restart count. (When device reset or reboot, it will also clear pulse count data.)

#### Note:

- (1) The input pulse width is greater than 100ms to accurately count.
- (2) The device report interval will be programmed based on the default firmware which may vary.
- (3) The interval between two reports must be the minimum time.

Please refer Netvox *LoRaWAN Application Command document* and *Netvox Lora Command Resolver* <a href="http://cmddoc.netvoxcloud.com/cmddoc">http://cmddoc.netvoxcloud.com/cmddoc</a> to resolve uplink data.

Data report configuration and sending period are as following:

| Min Interval       | Max Interval       | Danautahla Changa | Current Change≥   | Current Change <  |
|--------------------|--------------------|-------------------|-------------------|-------------------|
| (Unit: second)     | (Unit: second)     | Reportable Change | Reportable Change | Reportable Change |
| Any number between | Any number between | Con not be 0      | Report            | Report            |
| 1~65535            | 1~65535            | Can not be 0      | per Min Interval  | per Max Interval  |

#### 5.1 Example of ReportDataCmd

#### FPort: 0x06

| Bytes | 1       | 1          | 1          | Var(Fix=8 Bytes)  |
|-------|---------|------------|------------|-------------------|
|       | Version | DeviceType | ReportType | NetvoxPayLoadData |

Version - 1 bytes -0x01——the Version of NetvoxLoRaWAN Application Command Version

**DeviceType**– 1 byte – Device Type of Device

The devicetype is listed in Netvox LoRaWAN Application Devicetype.doc

**ReportType** – 1 byte –the presentation of the NetvoxPayLoadData, according the devicetype

**NetvoxPayLoadData**– Fixed bytes (Fixed =8bytes)

#### **Tips**

#### 1. Battery Voltage:

The voltage value is bit  $0 \sim$  bit 6, bit 7=0 is normal voltage, and bit 7=1 is low voltage.

Battery=0xA0, binary=1010 0000, if bit 7= 1, it means low voltage.

The actual voltage is  $0010\ 0000 = 0x20 = 32$ , 32\*0.1v = 3.2v

#### 2. Version Packet:

When Report Type=0x00 is the version packet, such as 013F<u>00</u>0A0B<u>20200520</u>0000, the firmware version is 2020.05.20

#### 3. Data Packet:

When Report Type=0x01 is data packet.

| Device  | Device | Report             | NetvoxPayLoadData      |                 |                       |                     |  |  |  |
|---------|--------|--------------------|------------------------|-----------------|-----------------------|---------------------|--|--|--|
| Device  | Type   | Type               |                        |                 |                       |                     |  |  |  |
|         |        | 0x00<br>0x3F       | SoftwareVersion(1Byte) | HardwareVersion | DateCode              | Reserved            |  |  |  |
| D710112 | 02E    |                    | Eg.0x0A—V1.0           | (1Byte)         | (4Bytes,eg0x20170503) | (2Bytes,fixed 0x00) |  |  |  |
| R718H2  | UXSF   | 001                | Battery                | Pulse1Count     | Pulse2Count           | Reserved            |  |  |  |
|         | 0x01   | (1Byte, unit:0.1V) | (2byte)                | (2byte)         | (3Bytes,fixed 0x00)   |                     |  |  |  |

#### **Example of uplink:** 013F012400C8013B000000

1<sup>st</sup> byte (01): Version

 $2^{\text{nd}}$  byte (3F): DeviceType 0x3F - R718H2

3<sup>rd</sup> byte (01): ReportType

4<sup>th</sup> byte (24): Battery – 3.6v , 24 Hex=36 Dec 36\*0.1v=3.6v

5<sup>th</sup> 6<sup>th</sup> byte (00C8): PulseCount - 200, 00C8 Hex=200 Dec

 $7^{th}$  8<sup>th</sup> byte (013B): PulseCount—315, 013B Hex=315 Dec

9<sup>th</sup> -11<sup>th</sup> byte (000000): Reserved

# **5.2** Example of ConfigureCmd

#### FPort: 0x07

| Ву | ytes | 1     | 1          | Var(Fix =9 Bytes) |
|----|------|-------|------------|-------------------|
|    |      | CmdID | DeviceType | NetvoxPayLoadData |

**CmdID**– 1 byte

**DeviceType**– 1 byte – Device Type of Device

**NetvoxPayLoadData**— var bytes (Max=9bytes)

| Description | Delin  | Cmd  | Device | NetvoxPayLoadData   |                  |                     |                    |                     |
|-------------|--------|------|--------|---------------------|------------------|---------------------|--------------------|---------------------|
| Description | Device | ID   | Type   |                     |                  |                     |                    |                     |
| Config      |        | 001  |        | MinTime             | MaxTime          | BatteryChange       | Reserved           |                     |
| ReportReq   |        | 0x01 |        | (2bytes Unit:s)     | (2bytes Unit:s)  | (1byte Unit:0.1v)   | (4Bytes,Fixed0x00) |                     |
| Config      | 001    |      |        | Sta                 | atus             | Re                  | served             |                     |
| ReportRsp   | R718H2 | 0x81 | 0x3F   | (0x00_              | success)         | (8Bytes,Fixed 0x00) |                    |                     |
| ReadConfig  | 10112  | 0x02 | OASI   |                     | Res              | served              |                    |                     |
| ReportReq   |        | UXUZ |        | (9Bytes,Fixed 0x00) |                  |                     |                    |                     |
| ReadConfig  |        | 0x82 | 0x82   |                     | MinTime          | MaxTime             | BatteryChange      | Reserved            |
| ReportRsp   |        |      |        |                     | (2bytes Unit: s) | (2bytes Unit: s)    | (1byte Unit: 0.1v) | (4Bytes, Fixed0x00) |

# (1) Command Configuration:

 $MinTime = 1min \cdot MaxTime = 1min \cdot BatteryChange = 0.1v$ 

Downlink: 013F003C003C0100000000  $003C(H_{ex}) = 60(D_{ec})$ 

Response: 813F000000000000000000 (Configuration success)

813F0100000000000000000 (Configuration failure)

### (2) Read Configuration:

Response: 823F003C003C0100000000 (Current configuration)

| SetFilterTime |            | 002  |      | FilterTime        | Reserved             |  |  |
|---------------|------------|------|------|-------------------|----------------------|--|--|
| Req           |            | 0x03 |      | (1byte,Unit: 5ms) | (8Bytes, Fixed 0x00) |  |  |
| SetFilterTime | R718H2 0x8 | 0x83 | 025  | Status            | Reserved             |  |  |
| Rsp           |            |      | 0x3F | (0x00_success)    | (8Bytes, Fixed 0x00) |  |  |
| GetFilterTime |            |      |      | Rese              | erved                |  |  |
| Req           |            | 0x04 |      | (9Bytes,Fi        | (9Bytes,Fixed 0x00)  |  |  |

| GetFilterTime                |        | 0x84 | 0x3F | FilterTime                   | Reserved                     |
|------------------------------|--------|------|------|------------------------------|------------------------------|
| Rsp                          |        |      |      | (1byte,Unit: 5ms)            | (8Bytes, Fixed 0x00)         |
| SetPulseCounter              |        | 0x05 |      | PulseCounterClearMode        | Reserved (8Bytes,Fixed 0x00) |
| ClearModeReq                 |        |      |      | (1Byte,0x00_Clear When SEND, |                              |
| 1                            |        |      |      | 0x01_Clear When Roll-Over)   |                              |
| SetPulseCounter              | R718H2 | 0x85 |      | Status                       | Reserved                     |
| ClearModeRsp                 |        |      |      | (0x00_success)               | (8Bytes,Fixed 0x00)          |
| GetPulseCounter              |        | 0x06 |      | Reserved                     |                              |
| ClearModeReq                 |        |      |      | (9Bytes,Fixed 0x00)          |                              |
| GetPulseCounter ClearModeRsp |        | 0x86 |      | PulseCounterClearMode        | Reserved (8Bytes,Fixed 0x00) |
|                              |        |      |      | (1Byte,0x00_Clear When SEND, |                              |
|                              |        |      |      | 0x01_Clear When Roll-Over)   |                              |

#### (3) Setting the FilterTime = 100ms

Response: 833F000000000000000000 (Configuration success)

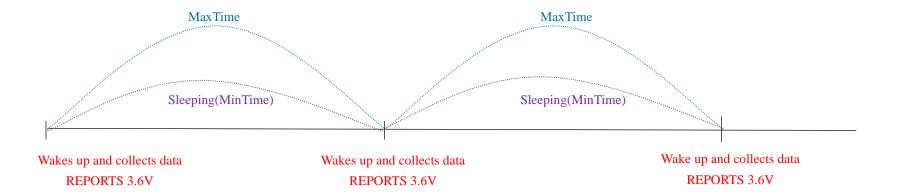
833F0100000000000000000 (Configuration failure)

#### (4) Read the FilterTime Configuration:

Response: 843F14000000000000000000000 (Current device parameter)

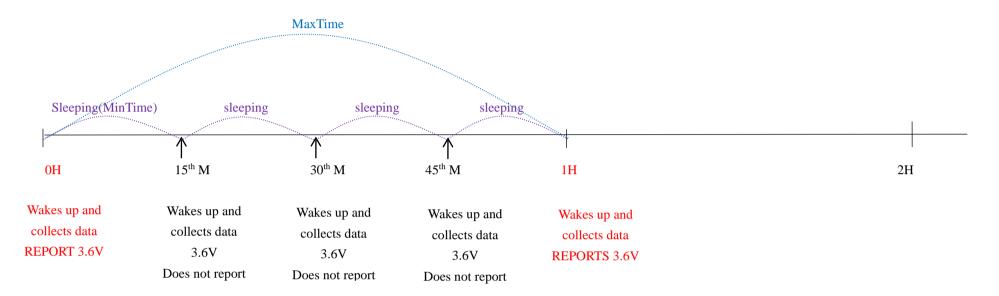
#### (5) Setting the Pulse Counter Clear Mode = 0x01\_Clear When Roll-Over

Response: 853F000000000000000000 (Configuration success)

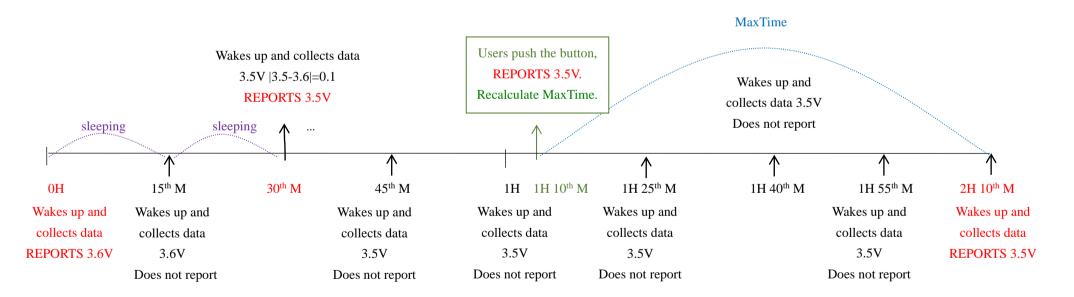

853F010000000000000000 (Configuration failure)

#### (6) Read the Pulse Counter Clear Mode Configuration:

Response: 863F010000000000000000000000 (Current device parameter)


#### **5.3 Example for MinTime/MaxTime logic**

**Example#1** based on MinTime = 1 Hour, MaxTime= 1 Hour, Reportable Change i.e. BatteryVoltageChange=0.1V

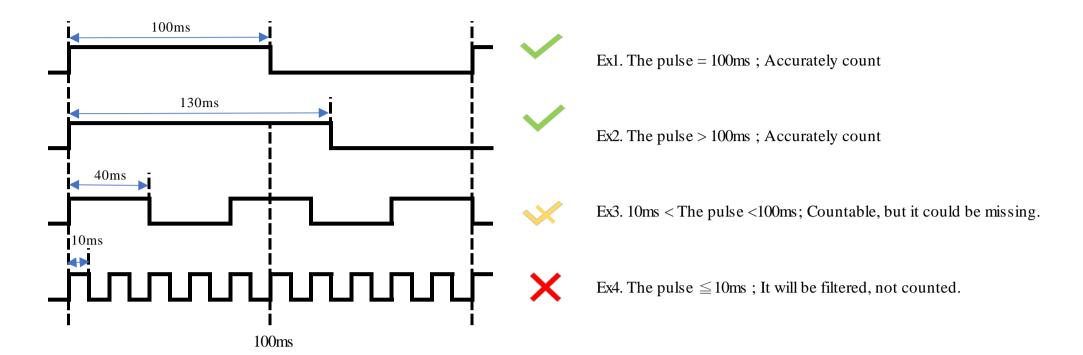



Note: MaxTime=MinTime. Data will only be report according to MaxTime (MinTime) duration regardless BatteryVoltageChange value.

**Example#2** based on MinTime = 15 Minutes, MaxTime= 1 Hour, Reportable Change i.e. BatteryVoltageChange= 0.1V.



**Example#3** based on MinTime = 15 Minutes, MaxTime= 1 Hour, Reportable Change i.e. BatteryVoltageChange= 0.1V.




#### Notes:

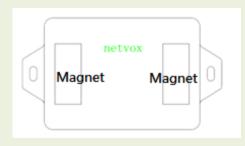
- 1) The device only wakes up and performs data sampling according to MinTime Interval. When it is sleeping, it does not collect data.
- 2) The data collected is compared with the last data reported. If the data variation is greater than the ReportableChange value, the device reports according to MinTime interval. If the data variation is not greater than the last data reported, the device reports according to MaxTime interval.
- 3) We do not recommend to set the MinTime Interval value too low. If the MinTime Interval is too low, the device wakes up frequently and the battery will be drained soon.

4) Whenever the device sends a report, no matter resulting from data variation, button pushed or MaxTime interval, another cycle of MinTime/MaxTime calculation is started.

# 6. Filtering time



<sup>\*</sup>Pulse filtering time must be multiple of 5ms (can be set)


## 7. Installation

1. Wireless 2-Input Pulse Counter Interface (R718H2) has the built-in magnet (as the figure below). When installed, it can be attached to the surface of an object with iron which is convenient and quick.

To make the installation more secure, use screws (purchased) to secure the unit to a wall or other surface (see Figure 2 below).

#### Note:

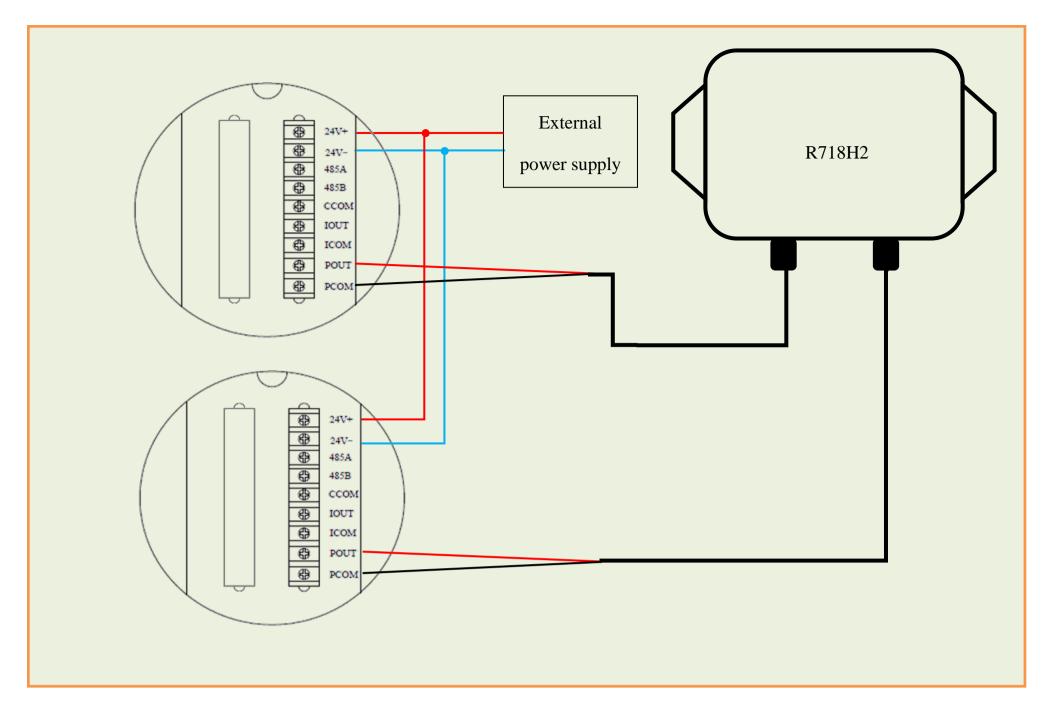
Do not install the device in a metal shielded box or in an environment with other electrical equipment around it to avoid affecting the wireless transmission of the device.





- 2. Wireless 2-Input Pulse Counter Interface (R718H2) is sent according to the maximum and minimum interval, and the count is automatically cleared after transmission
- 3. When the count reaches 65535 (0xFFFF), a report is automatically sent (sending value is 65535), and the report loop is restarted.

#### Note:


- Input pulse width greater than 100ms can be accurately counted.
- External pulse input level is not higher than 3.3V

Wireless Pulse Counter Interface (R718H2)

It can also be applied to the following scenarios:

- •Electric meter
- •Water meter
- •Gas Meter
- •Flow meter

When it is necessary to instrumentation equipment with pulse signal output.



#### **Note:**

Please do not disassemble the device unless it is required to replace the batteries.

Do not touch the waterproof gasket, LED indicator light, function keys when replacing the batteries. Please use suitable screwdriver to tighten the screws (if using an electric screwdriver, it is recommended to set the torque as 4kgf) to ensure the device is impermeable.

# 8. Information about Battery Passivation

Many of Netvox devices are powered by 3.6V ER14505 Li-SOC12 (lithium-thionyl chloride) batteries that offer many advantages including low self-discharge rate and high energy density.

However, primary lithium batteries like Li-SOCl2 batteries will form a passivation layer as a reaction between the lithium anode and thionyl chloride if they are in storage for a long time or if the storage temperature is too high. This lithium chloride layer prevents rapid self-discharge caused by continuous reaction between lithium and thionyl chloride, but battery passivation may also lead to voltage delay when the batteries are put into operation, and our devices may not work correctly in this situation.

As a result, please make sure to source batteries from reliable vendors, and it is suggested that if the storage period is more than one month from the date of battery production, all the batteries should be activated.

If encountering the situation of battery passivation, users can activate the battery to eliminate the battery hysteresis.

#### **ER14505 Battery Passivation:**

#### 8.1 To determine whether a battery requires activation

Connect a new ER14505 battery to a resistor in parallel, and check the voltage of the circuit.

If the voltage is below 3.3V, it means the battery requires activation.

#### 8.2 How to activate the battery

- a. Connect a battery to a resistor in parallel
- b. Keep the connection for 5~8 minutes
- c. The voltage of the circuit should be  $\geq 3.3$ , indicating successful activation.

| Brand  | Load Resistance | Activation Time | Activation Current |
|--------|-----------------|-----------------|--------------------|
| NHTONE | 165 Ω           | 5 minutes       | 20mA               |
| RAMWAY | 67 Ω            | 8 minutes       | 50mA               |
| EVE    | 67 Ω            | 8 minutes       | 50mA               |
| SAFT   | 67 Ω            | 8 minutes       | 50mA               |

#### Note:

If you buy batteries from other than the above four manufacturers, then the battery activation time, activation current, and required load resistance shall be mainly subject to the announcement of each manufacturer.

# 9. Important Maintenance Instruction

Kindly pay attention to the following in order to achieve the best maintenance of the product:

- Keep the equipment dry. Rain, moisture and various liquids or water may contain minerals that can corrode electronic circuits. In case the device is wet, please dry it completely.
- Do not use or store in dusty or dirty areas. This way can damage its detachable parts and electronic components.
- Do not store in excessive heat place. High temperatures can shorten the life of electronic devices, destroy batteries, and deform or melt some plastic parts.
- Do not store in excessive cold place. Otherwise, when the temperature rises to normal temperature, moisture will form inside which will destroy the board.
- Do not throw, knock or shake the device. Treating equipment roughly can destroy internal circuit boards and delicate structures.
- Do not wash with strong chemicals, detergents or strong detergents.
- Do not paint the device. Smudges can make debris block detachable parts up and affect normal operation.
- Do not throw the battery into the fire to prevent the battery from exploding. Damaged batteries may also explode.

All the above suggestions apply equally to your device, batteries and accessories.

If any device is not operating properly, please take it to the nearest authorized service facility for repairing.